1. Selectable markers for use in genetic manipulation of extreme drug resistant (XDR) Acinetobacter baumannii HUMC1.
    Luna, B., Ulhaq A., Yan J., Pantapalangkoor, P., Nielsen, T., Davies, B., Actis, L., Spellberg, B.
    (2017) mSphere 00140-17
  2. Subinhibitory concentrations of ciprofloxacin enhance antimicrobial resistance and pathogenicity of Enterococcus faecium.
    Sinel, C., Cacaci, M., Meignen, P., Guerin, F., Davies, B.W., Sanguinetti, M., Giard, JC, Cattoir, V.
    (2017) Antimicrobial Agents and Chemotherapy AAC.02763-16
  3. C21orf57 is a human homologue of bacterial YbeY proteins.
    Ghosal, A., Köhrer C., Babu V.M.P., Yamanaka K., Davies B.W., Jacob A.I., Ferullo D.J., Gruber C.C., Vercruysse M., Walker G.C.
    (2017) BBRC S0006-291X(17)30217-6
  4. Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli.
    Vercruysse M., Köhrer C., Shen Y., Proulx S., Ghosal A., Davies B.W., RajBhandary U.L., Walker G.C.
    (2016) mBio 7(6):e01785-16
  5. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii.
    Boll J.M., Crofts A.A., Peters K., Cattoir V., Vollmer W., Davies B.W. and Trent M.S.
    (2016) PNAS 113(41):E6228-E6237
    Access the recommendation on F1000Prime
  6. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization.
    Kazi, M.I., Conrado, A.R., Mey, A.R., Payne, S.M. and Davies B.W.
    (2016) PLOSPathogens 12(4):e1005570
    Access the recommendation on F1000Prime
  7. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival.
    Boll J.M., Tucker A.T., Klein, D.R., Beltran A.M., Brodbelt, J.S., Davies B.W. and Trent M.S.
    (2015) mBio 6(3):e00478-15
  8. The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence through Endotoxin Modification.
    Herrera C.M., Crofts A.A., Henderson J.C., Pingali S.C., Davies B.W. and Trent M.S.
    (2014) mBio 5(6):e02283-14
  9. Defining Gene-Phenotype Relationships in Acinetobacter baumannii Through One-Step Chromosomal Gene Inactivation.
    Tucker A.T., Nowicki E.M., Boll J.M., Knauf G.A., Burdis N.C., Trent M.S. and Davies B.W.
    (2014) mBio 5(4):e01313-14
  10. The Highly Conserved Bacterial RNase YbeY Is Essential in Vibrio cholerae, Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing.
    Vercruysse M., Köhrer C., Davies B.W., Arnold M.F., Mekalanos J.J., RajBhandary U.L. and Walker G.C.
    (2014) PLoS Pathogens 10(6):e1004175
  11. Conserved Bacterial RNase YbeY Plays Key Roles in 70S Ribosome Quality Control and 16S rRNA Maturation.
    Jacob, A.I., Köhrer C., Davies B.W., RajBhandary U. and Walker G.C.
    (2013) Molecular Cell 49(3):427-438

2012 and earlier

  1. MetR-Regulated Vibrio cholerae metabolism is required for virulence.
    Bogard R.W., Davies B.W. and Mekalanos J.J.
    (2012) mBio 3(5):e00236-12
  2. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence.
    Davies B.W., Bogard R.W., Young T.S. and Mekalanos J.J.
    (2012) Cell 149(2):358-370 Comment in Nat. Rev. Microbiol.
  3. Mapping of Vibrio cholerae Fur Regulon Identifies Unique Roles in sRNA and Transport Regulation.
    Davies B.W., Bogard, R.W. and Mekalanos J.J.
    (2011) PNAS 180(30): 12467-72
  4. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine.
    Davies B.W., Bogard R.W., Dupes N.M., Gerstenfeld T.A.I., Simmons L.A. and Mekalanos, J.J.
    (2011) PLoS Pathogens 7(2): e1001295
  5. Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing.
    Davies B.W., Koehrer C., Jacob A.I., Simmons L.A., Zhu J., Aleman L.M., Rajbhandary U.L., and Walker G.C.
    (2010) Molecular Microbiology 78(2): 506-518.
  6. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli.
    Davies B.W., Kohanski M.A., Simmons L.A., Collins J.J. and Walker G.C.
    (2009) Molecular Cell 36(5): 845-860. Highlighted in same issue.
  7. A comparison of response to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction.
    Simmons L.A., Goranov A.I., Kobayashi H., Davies B.W., Yuan D.S., Grossman A.D. and Walker G.C.
    (2009) Journal of Bacteriology 191(4): 1152-61.
  8. beta-Clamp Directs Localization of Mismatch Repair in Bacillus subtilis.
    Simmons L.A., Davies B.W., Grossman A.D. and Walker G.C.
    (2008) Molecular Cell 29(3): 291-301.
  9. A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection.
    Davies B.W. and Walker G.C.
    (2008) Journal of Bacteriology 190(3): 1118-23.
  10. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model.
    Jones K.M., Kobayashi H., Davies B.W., Taga M E. and Walker G.C.
    (2007) Nature Reviews Microbiology 5(8): 619-633.
  11. Disruption of sitA compromises Sinorhizobium meliloti for manganese-dependent oxidative stress protection.
    Davies B.W. and Walker G.C.
    (2007) Journal of Bacteriology 189(5): 2101-2109.
  12. Identification of novel Sinorhizobium meliloti mutants compromised for oxidative stress protection and symbiosis.
    Davies B.W. and Walker G.C.
    (2007) Journal of Bacteriology 189(5): 2110-2113.
  13. Reexpression of a cluster of silenced transgenes is associated with their rearrangement.
    McBurney M.W., Lau S., Jardine K., Yang X., and Davies B.
    (2001) Genes, Chromosomes & Cancer 32(4): 311-323.